Interpreting the Unresolved Intensity of Cosmologically Redshifted Line Radiation

نویسنده

  • E. R. SWITZER
چکیده

Intensity mapping experiments survey the spectrum of diffuse line radiation rather than detect individual objects at high signal-to-noise ratio. Spectral maps of unresolved atomic and molecular line radiation contain three-dimensional information about the density and environments of emitting gas and efficiently probe cosmological volumes out to high redshift. Intensity mapping survey volumes also contain all other sources of radiation at the frequencies of interest. Continuum foregrounds are typically ∼ 10–10 times brighter than the cosmological signal. The instrumental response to bright foregrounds will produce new spectral degrees of freedom that are not known in advance, nor necessarily spectrally smooth. The intrinsic spectra of foregrounds may also not be well known in advance. We describe a general class of quadratic estimators to analyze data from single-dish intensity mapping experiments and determine contaminated spectral modes from the data themselves. The key attribute of foregrounds is not that they are spectrally smooth, but instead that they have fewer bright spectral degrees of freedom than the cosmological signal. Spurious correlations between the signal and foregrounds produce additional bias. Compensation for signal attenuation must estimate and correct this bias. A successful intensity mapping experiment will control instrumental systematics that spread variance into new modes, and it must observe a large enough volume that contaminant modes can be determined independently from the signal on scales of interest. Subject headings: methods: data analysis – methods: statistical – (cosmology:) diffuse radiation – (cosmology:) large-scale structure of universe

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the contribution of microlensing to X-ray variability of high-redshifted QSOs

We consider a contribution of microlensing in X-ray variability of high-redshifted QSOs. Such an effect could be caused by stellar mass objects (SMO) located in a bulge or/and in a halo of this quasar as well as at cosmological distances between an observer and a quasar. Here, we not consider microlensing caused by deflectors in our Galaxy since it is well-known from recent MACHO, EROS and OGLE...

متن کامل

Contribution of microlensing to X-ray variability of distant QSOs

We consider a contribution of microlensing to the X-ray variability of high-redshifted QSOs. Cosmologically distributed gravitational microlenses could be localized in galaxies (or even in bulge or halo of gravitational macrolenses) or could be distributed in a uniform way. We have analyzed both cases of such distributions. We found that the optical depth for gravitational microlensing caused b...

متن کامل

Intensity Mapping with Carbon Monoxide Emission Lines and the Redshifted 21 Cm Line

We quantify the prospects for using emission lines from rotational transitions of the CO molecule to perform an ‘intensity mapping’ observation at high redshift during the Epoch of Reionization (EoR). The aim of CO intensity mapping is to observe the combined CO emission from many unresolved galaxies, to measure the spatial fluctuations in this emission, and use this as a tracer of large scale ...

متن کامل

Amplification and variability of the AGN X - ray emission due to mi - crolensing

We consider the contribution of microlensing to the AGN Fe Kα line and X-ray continuum amplification and variation. To investigate the variability of the line and X-ray continuum, we studied the effects of microlensing on quasar X-ray spectra produced by crossing of a microlensing pattern across a standard relativistic accretion disk. To describe the disk emission we used a ray tracing method c...

متن کامل

Evaluation of the Bystander effect caused ultrasound waves on the MCF-7 cell line

Introduction: Non-target radiation effects are damages and effects that occur without the need for direct radiation exposure in cells. Bystander signals cause non-targeted irradiation effect that has been defined as radiation responses in which non-irradiated cells exhibit irradiated effects as a result of signals from adjacent irradiated cells. In this study, the bystander ef...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016